skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muya, Jules Tshishimbi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The symmetry breaking in octahedral silsesquioxane and its germanium analogues (Si8O12H8and Ge8O12H8) has been investigated using the M06-2X/6-31++G(3df, 3pd) method and group theory. Both structures undergo$${O}_{h}\downarrow {T}_{h}$$symmetry breaking, characterized by pseudo-Jahn−Teller stabilization energies of 0.22 kcal/mol for Si-POSS and 9.82 kcal/mol for Ge-POSS. Under the influence of the pseudo-Jahn–Teller effect, the distortion vector involves the vibrational a2gmode with imaginary frequency. The distortion forces in Oh-POSS are predominantly localized on the oxygen atoms and driven by the coupling between the lowest unoccupied molecular orbital (a1g) and the highest occupied molecular orbital (a2g). The symmetry breaking is attributed to a pseudo-Jahn–Teller mechanism of type (a2gx a1g) = a2g. The symmetrical substitution of oxygen atoms by X (where X = C, N, P) results in viable Th-Si8X12H8and Th-Ge8X12H8structures. The observed pseudo-Jahn–Teller distortion and substitutional symmetry breaking caused by X indicates a consistent electronic relaxation mechanism, characterized by the formation of C=C, N=N and P=P bonds on the POSS cubic faces, which serves as hallmarks of stability. Additionally, we find that the volume of substituted Th-symmetrical POSS is sufficiently large to accommodate small ions. 
    more » « less
    Free, publicly-accessible full text available August 18, 2026
  2. ABSTRACT The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size‐extensivity (MR‐CISD+Q and MR‐CISD) and averaged quadratic coupled cluster theory (MR‐AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc‐pVDZ and cc‐pVTZ basis sets. The larger active space included the two electrons in the nonbonding sp2hybrid orbital on sulfur. We find that all didehydro isomers exist as planar, stable ground state singlets. The singlet‐triplet (S‐T) adiabatic gaps range from 15 to 25 kcal/mol while the vertical splittings are 21–35 kcal/mol. The 2,3 isomer has the lowest absolute ground state singlet energy and the largest adiabatic and vertical S‐T splitting. The ground states of the 2,3‐, and 2,5‐didehydrothiophene isomers are predicted to exhibit the smallest and largest diradical character, respectively, based on their electronic structures, spin densities and bonding analysis. To our knowledge, no experimental excitation energies of any of the didehydrothiophene isomers are available, and our computed MR‐AQCC/cc‐pVTZ data are believed to be among the most accurate computed results. This extensive study shows a competitive performance between MR‐AQCC and MR‐CISD+Q. 
    more » « less
    Free, publicly-accessible full text available January 30, 2026